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1 Introduction

QCD is the theory of strong interactions describing quarks and gluons which displays

confinement at low energies. The mechanism behind confinement is still not successfully

described. Even if one omits the quarks, the theory remains confining. Therefore, con-

finement is highly entangled with the dynamics of gluons, which makes glueballs very

interesting objects to investigate. The existence of glueballs would be a pinnacle of the

correctness of QCD, however, so far, there is still no clear experimental evidence for the

existence of glueballs. This is mainly due to the mixing of glueball states with meson states

which contain quarks. By increasing the statistics and/or by doing more involved experi-

ments creating certain glueball states which cannot mix with quark states (oddballs), one

hopes to uncover some clear evidence for glueball states. We mention a few experiments

to demonstrate the general interest in glueballs: PANDA [1], BES III [2] and GlueX [3],

ALICE at CERN [4].
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The lack of experimental evidence has not stopped the community to widely investigate

glueballs in various theoretical models, see [5] and their references therein. Currently,

theoretical estimates of e.g. masses of the different glueballs are compared to the lattice

data. In lattice gauge theories, there is no doubt about the existence of glueballs and

one can even work in pure Yang-Mills gauge theory [6]. There are many phenomenological

models which contribute to our intuition in glueballs. More direct contact with fundamental

QCD can be made by identifying suitable gauge invariant operators, which carry the correct

quantum numbers to create/annihilate particular glueball states [7]. This is in accordance

with the direct approach to study bound states in quantum field theory [8]. The mass of the

glueball can then be determined by the leading singularity in its propagator which, if the

glueball is stable, is just a simple pole. Of course, it is necessary to take into account non-

perturbative effects, as glueballs are inherently connected to the non-perturbative region of

QCD. One widely used method to estimate these propagators is based on QCD sumrules [9,

10], while taking into account condensates, sometimes in combination with instanton or

other non-perturbative effects. Also in holographic descriptions of QCD, such glueball

correlators have already been investigated, see for instance [11, 12].

In this paper, we shall concentrate on identifying a suitable composite operator R,

which is a renormalization group invariant containing F 2
µν , representing the lightest scalar

glueball. Let us explain how we shall take into account a particular source of non-

perturbative effects. For this, we need a bit of background. As is well known, the Faddeev-

Popov quantization of the Yang-Mills gauge theory was constructed in order to restrict the

path integration only over gauge inequivalent fields. This restriction is translated at the

level of the action by implementing a gauge, e.g. the Landau gauge ∂µAµ = 0, through the

introduction of extra terms in the action, which in return break the local gauge invariance.

In 1977, Gribov showed [13] that this gauge fixing procedure in Yang-Mills gauge theories

does not entirely restrict the path integration to gauge inequivalent fields, i.e. there are

still multiple gauge copies Aµ which all fulfill the Landau gauge condition. Moreover, it

appeared that the infrared behavior of the gluon and the ghost propagator is strongly in-

fluenced when handling these copies. Therefore, there was a need for a formalism which

took into account these Gribov copies, even if it would be only in a partial way. After a

semiclassical treatment by Gribov in [13], Zwanziger managed to construct an action which

analytically implements the restriction to the Gribov region Ω [14]. This action is called

the Gribov-Zwanziger action SGZ. The region Ω is defined as the set of field configurations

fulfilling the Landau gauge condition and for which the Faddeev-Popov operator,

Mab = −∂µ

(
∂µδab + gfacbAc

µ

)
, (1.1)

is strictly positive. Therefore,

Ω ≡ {Aa
µ, ∂µAa

µ = 0, Mab > 0} . (1.2)

The boundary, ∂Ω, of the region Ω is called the (first) Gribov horizon. The restriction of

the path integral to Ω removes most of the Gribov copies in the Landau gauge related to

(infinitesimal) gauge transformations [13]. However, there are still copies present in Ω and
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hence a further restriction to the Fundamental Modular Region (FMR), the region free of

any Gribov copies, should be implemented. Unfortunately, till now, nobody knows how to

handle such a restriction to the FMR. Therefore, the best analytical approach to restrict

the number of gauge copies is by working with SGZ. We recall that SGZ is renormalizable

to all orders [15–17], even in the presence of massless [18, 19] or massive quarks [20].

Implementing the restriction to the horizon introduces a first non-perturbative mass scale,

the so-called Gribov parameter γ2. Also, we have found in [21, 22] that the auxiliary fields

introduced by Zwanziger to construct the action SGZ, develop their own dynamics. This

can introduce a second mass scale into the action. Generally, such non-perturbative mass

scales are expected to be transmitted into the pole mass of the correlation functions.

In a previous paper [23] we have investigated the operator F 2
µν in the ordinary Yang-

Mills theory with Landau gauge fixing. This was already far from being trivial as at the

quantum level mixing occurs with two other 4 dimensional operators, i.e. a BRST exact

operator E = s(. . .), and an operator H which vanishes upon using the equations of motion.

We have shown that this mixing does not have consequences when turning to physical

states. Indeed, a BRST exact operator is always irrelevant at the level of physical states

as the Yang-Mills action is invariant under the BRST symmetry. In this paper, we shall

elaborate on the operator F 2
µν by investigating it in the more complex Gribov-Zwanziger

framework, whereby exploiting the construction we have set up in [23]. In this case, a

similar mixing shall occur, but, in contrast with the Yang-Mills case this mixing shall have

consequences at the physical level. Indeed, as the Gribov-Zwanziger action gives rise to a

soft breaking of the BRST symmetry [22], one can figure out that the corresponding BRST

exact operator which will mix with F 2
µν , will no longer be irrelevant. Let us mention that

an attempt to calculate the glueball correlator
〈
F 2

µν(x)F 2
αβ(y)

〉
has been done in [24], but

without taking into account the mixing of F 2
µν with other operators. We start the paper

with an overview of the Gribov-Zwanziger action in section 2. We also recapitulate the

Refined Gribov-Zwanziger action which takes into account the dynamics of the new fields

introduced by Zwanziger. In section 3, a renormalizable action including the local, non-

integrated operator F 2
µν(x) is constructed whereby in section 4 we shall analyze the mixing

of this operator to all orders. In section 5, we shall determine the renormalization group

invariant which contains F 2
µν . We end this paper with a conclusion in section 6, where we

also present some insights on the potential relevance of the soft BRST symmetry breaking

of the GZ action.

2 Overview of the (Refined) Gribov-Zwanziger action

2.1 The original Gribov-Zwanziger action

In this section we shall shortly recapitulate the ordinary Gribov-Zwanziger action in Eu-

clidean space time which implements the restriction of the path integral to the region Ω.

In [14], Zwanziger derived the following action,

Sh = SYM + Sgf + γ4

∫
ddxh(x) , (2.1)

– 3 –
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with SYM the classical Yang-Mills action,

SYM =
1

4

∫
ddxF a

µνF a
µν , (2.2)

Sgf the Faddeev-Popov gauge fixing

Sgf =

∫
ddx

(
ba∂µAa

µ + ca∂µDab
µ cb

)
, (2.3)

and h(x) the horizon function,

h(x) = g2fabcAb
µ

(
M−1

)ad
fdecAe

µ . (2.4)

The horizon condition:

〈h(x)〉 = d(N2 − 1) , (2.5)

with d the number of space-time dimensions, needs to be fulfilled in order to assure that

we are working with a gauge theory quantized in the Landau gauge. This was proven

using statistical arguments in [14, 15]. The action Sh contains a non-local term, but

one can localize the horizon function by introducing the following set of additional fields:(
ϕac

µ , ϕac
µ

)
which is a pair of complex conjugate bosonic fields, and

(
ωac

µ , ωac
µ

)
, which is a

pair of Grasmann fields. After this procedure, Sh gets replaced by SGZ, which reads

SGZ = S0 + Sγ , (2.6)

with

S0 = SYM + Sgf +

∫
ddx

(

ϕac
µ ∂ν

(
∂νϕ

ac
µ + gfabmAb

νϕ
mc
µ

)

−ωac
µ ∂ν

(
∂νωac

µ + gfabmAb
νω

mc
µ

)
− g

(
∂νωac

µ

)
fabm (Dνc)

b ϕmc
µ

)

,

Sγ = −γ2g

∫
ddx

(
fabcAa

µϕbc
µ + fabcAa

µϕbc
µ +

d

g

(
N2 − 1

)
γ2

)
, (2.7)

We can further simplify the notation of the additional fields
(
ϕac

µ , ϕac
µ , ωac

µ , ωac
µ

)
as S0 dis-

plays a symmetry with respect to the composite index i = (µ, c). Therefore, we can set

(
ϕac

µ , ϕac
µ , ωac

µ , ωac
µ

)
= (ϕa

i , ϕ
a
i , ω

a
i , ω

a
i ) , (2.8)

so we get

S0 = SYM + Sgf +

∫
ddx

(
ϕa

i ∂µ

(
Dab

µ ϕb
i

)
− ωa

i ∂µ

(
Dab

µ ωb
i

)
− gfabc∂µωa

i D
bd
µ cdϕc

i

)
. (2.9)

Finally, the horizon condition (2.5) can be written in a more practical version as

∂Γ

∂γ2
= 0 , (2.10)
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whereby the quantum action Γ is obtained through the definition

e−Γ =

∫
[dΦ]e−SGZ , (2.11)

where
∫

[dΦ] stands for the integration over all the fields.

For the Gribov-Zwanziger action, the conventional BRST symmetry is softly bro-

ken [14, 22]. We recall that the BRST transformations of all the fields are given by

sAa
µ = − (Dµc)a , sca =

1

2
gfabccbcc ,

sca = ba , sba = 0 ,

sϕa
i = ωa

i , sωa
i = 0 ,

sωa
i = ϕa

i , sϕa
i = 0 . (2.12)

The existence of this explicit breaking can be easily checked by releasing the BRST trans-

formation s onto the action SGZ,

sSGZ = gγ2

∫
ddxfabc

(
Aa

µωbc
µ −

(
Dam

µ cm
) (

ϕbc
µ + ϕbc

µ

))
. (2.13)

We refer to [22] for more details concerning this breaking.

In order to discuss the renormalizability of SGZ, we treat the breaking as a composite

operator to be introduced into the action by means of a suitable set of external sources.

This procedure can be done in a BRST invariant way, by embedding SGZ into a larger

action, namely

ΣGZ = SYM + Sgf + S0 + Ss , (2.14)

whereby

Ss = s

∫
ddx

(
−Uai

µ Dab
µ ϕb

i − V ai
µ Dab

µ ωab
i − Uai

µ V ai
µ

)

=

∫
ddx

(
−Mai

µ Dab
µ ϕb

i − gfabcUai
µ Dbd

µ cdϕc
i + Uai

µ Dab
µ ωb

i (2.15)

−Nai
µ Dab

µ ωb
i − V ai

µ Dab
µ ϕb

i + gfabcV ai
µ Dbd

µ cdωc
i − Mai

µ V ai
µ + Uai

µ Nai
µ

)
.

We have introduced 4 new sources Uai
µ , V ai

µ , Mai
µ and Nai

µ with the following BRST trans-

formations, and

sUai
µ = Mai

µ , sMai
µ = 0 ,

sV ai
µ = Nai

µ , sNai
µ = 0 . (2.16)

This embedding into a larger action is necessary for the algebraic proof of the renormaliz-

ability as this heavily relies on having a BRST symmetry. Replacing the sources with their

physical values in the end, returns the Gribov-Zwanziger action,

Uai
µ

∣∣
phys

= Nai
µ

∣∣
phys

= 0 , (2.17)

Mab
µν

∣∣∣
phys

= V ab
µν

∣∣∣
phys

= γ2δabδµν , (2.18)

as one can easily check.

– 5 –
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2.2 The Refined Gribov-Zwanziger action

Let us explain the origin of the Refined Gribov-Zwanziger action. In the original Gribov-

Zwanziger framework in 4 dimensions, one obtains an infrared suppressed, positivity vi-

olating gluon propagator which tends towards zero for zero momentum and an infrared

enhanced ghost propagator. This behavior of the gluon and the ghost propagator stem-

ming from the action SGZ seemed to be in agreement with the lattice results for a long

time. Until more recently, the authors of [25] discovered a completely different behavior

of the propagators in the deep infrared working on larger lattices. Now the ghost prop-

agator no longer seems to be enhanced and the gluon propagator reaches a finite value

at zero momentum. Since the publication of [25], more lattice data have confirmed these

striking results [26–31]. Therefore, the Gribov-Zwanziger framework appeared to be in

disagreement with these newest lattice data. However, in [21, 22], we have shown that it

is still possible to obtain results with the help of the Gribov-Zwanziger action which are

in qualitative concordance with these new lattice data by taking into account the dynam-

ics of the fields (ϕac
µ , ϕac

µ , ωac
µ ,ωac

µ ). This gives rise to additional non-perturbative effects

within the Gribov-Zwanziger framework as, for instance, the dimension two condensate

〈ϕac
µ ϕac

µ − ωac
µ ωac

µ 〉, which has been found [21, 22] to be proportional to γ2. It is apparent

that the dynamics of these extra fields is highly entangled to the existence of the horizon.

Therefore, we have refined the Gribov-Zwanziger action by explicitly adding the operator

ϕac
µ ϕac

µ − ωac
µ ωac

µ from the start, while preserving the renormalizability of the theory.

The Refined Gribov-Zwanziger action is thus given by

SRGZ = SGZ + Sϕϕ + Sen , (2.19)

whereby

Sϕϕ = −M2

∫
ddx (ϕa

i ϕ
a
i − ωa

i ω
a
i ) ,

Sen = 2
d(N2 − 1)√

2g2N

∫
ddx ς γ2M2 . (2.20)

We have introduced a new parameter ς and a new mass M2. The second term Sen is a

constant term, which is comparable with the term −γ2
∫

ddxd
(
N2 − 1

)
γ2 in the original

Gribov-Zwanziger formulation (2.7). This term will allow us to remain inside the Gribov

region Ω. For more details on this construction, we refer the reader to [22].

3 The (Refined) Gribov-Zwanziger action with the inclusion of the scalar

glueball operator

3.1 Generalities

The most natural way to study the lightest scalar glueball is by determining the correlator1〈
F 2(x)

4
F 2(y)

4

〉
. This correlator can be obtained by adding the operator F 2

µν/4 to the (Re-

fined) Gribov-Zwanziger action by coupling it to a source q(x). In this fashion, we obtain

1At least, this is our starting point. Later, we shall determine a renormalization group invariant R

containing F 2
µν , so we can calculate 〈R(x)R(y)〉.
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the correlator as follows,

[
δ

δq(y)

δ

δq(x)
Zc

]

q=0

=

〈
F 2(x)

4

F 2(y)

4

〉
, (3.1)

with Zc the generator of connected Green functions. In [23] we have studied the glueball

operator in the standard Yang-Mills theory, supplemented with the Landau gauge fixing.

The framework we have set up for pure Yang-Mills theories, can be now extended to the

more complex case of the Gribov-Zwanziger action, which is our current goal.

Unfortunately, simply adding F 2
µν to the action turns out to be too naive. In [23], we

have seen that the 4 dimensional operator F 2
µν mixes with other 4 dimensional operators

in d = 4, in agreement with the general theory concerning the renormalization of gauge

invariant operators [32–34]. Obviously, we also expect a similar mixing in the Gribov-

Zwanziger framework. As outlined in [23, 35, 36], we can distinguish between 3 different

classes of dimension 4 operators. The first class C1 is the set of the gauge invariant

operators, for example F 2
µν . The cohomology of the nilpotent BRST symmetry generator

s allows to identify the C1 operators F as those which can be written as sF = 0, but

also F 6= s(. . .). The second class C2 are the BRST exact operators, which are trivially

BRST invariant due to the nilpotency of the BRST operator. Thus E ∈ C2 if and only

if E = s(. . .). The third class C3 contains operators which vanish when the equations of

motion are invoked. One can then argue that the mixing matrix of these operators must

be upper triangular,




F0

E0

H0



 =




ZFF ZFE ZFH

0 ZEE ZEH

0 0 ZHH








F

E

H



 . (3.2)

This particular behavior of the mixing of the various class of operators can be easily

understood [35, 36]. Bare C2 operators cannot receive contributions from gauge invariant

C1 operators: matrix elements of a bare BRST exact operator E between physical states

are zero. But, if there would be a renormalized gauge invariant C1 contribution in the

expansion of E , then there would be room for a nonvanishing contribution, which is of

course a contradiction. Likewise, any C3 operator vanishes upon using the equations of

motion, while C1- and a C2 operators in general do not, hence a C3 operator will not receive

corrections from the other type of operators.

In [23], we have strictly proven in an algebraic fashion the upper triangular form of

the mixing matrix for the operator F 2
µν , just by using the Ward identities of the action. In

particular, we have proven that the following action is renormalizable for ordinary Yang-

– 7 –
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Mills gauge theories in the Landau gauge,

ΣYMglue = SYM +

∫
ddx

(
ba∂µAa

µ + ca∂µDab
µ cb

)
+

∫
ddxq

1

4
F 2

µν
︸ ︷︷ ︸
∈C1

+

∫
ddxλ∂µcaAa

µ +

∫
ddxη

(
∂µbaAa

µ + ∂µcaDab
µ cb

)

︸ ︷︷ ︸
∈C2

+

∫
ddxαAa

µ

δ(SYM + Sgf)

δAa
µ︸ ︷︷ ︸

∈C3

, (3.3)

whereby we see the three different classes of operators arising. We have introduced

three new sources: the doublet (λ,η) with sη = λ and the color singlet α. The term(
∂µbaAa

µ + ∂µcaDab
µ cb

)
is indeed an element belonging to the second class C2, as we can

rewrite it as s(∂µcaAa
µ). In [23], we have introduced the last term through a shift of the

gluon field Aa
µ → Aa

µ + αAa
µ.

3.2 Inclusion of the glueball operator in the Gribov-Zwanziger action

With the mixing of the 4 dimensional operators in mind, we can propose an enlarged

Gribov-Zwanziger action containing the glueball operator F 2
µν . This action will turn

out to be renormalizable. For this, we can make two observations. Firstly, the limit,

{ϕ,ϕ, ω, ω, U, V,N,M} → 0, has to lead to our original Yang-Mills action ΣYMglue with

the addition of the glueball terms given by equation (3.3). Secondly, setting all the terms

related to the glueball term qF 2 equal to zero, we should recover the Gribov-Zwanziger

action ΣGZ in equation (2.14). Therefore, we propose the following starting action:

Σglue = ΣGZ +

∫
ddx qF a

µνF a
µν

+

∫
ddxs

(
η
[
∂µcaAa

µ + ∂ω∂ϕ + gfakb∂ωaAkϕb + UaDabϕb + V aDabωb + UV
])

= ΣGZ +

∫
ddx qF a

µνF a
µν

+

∫
ddx

(

λ
[
∂µcaAa

µ + ∂ω∂ϕ + gfakb∂ωaAkϕb + UaDabϕb + V aDabωb + UV
]

+η
[
∂µbaAa

µ + ∂µcaDab
µ cb + ∂ϕ∂ϕ − ∂ω∂ω + gfakb∂ϕaAkϕb + gfakb∂ωaDkdcdϕb

−gfakb∂ωaAkωb + Mai
µ Dab

µ ϕb
i + gUai

µ fabcDab
µ cbϕc

i − Uai
µ Dab

µ ωb
i + Nai

µ Dab
µ ωb

i

−gV ai
µ fabcDbd

µ cdωc
i + V ai

µ Dab
µ ϕb

i + Mai
µ V ai

µ − Uai
µ Nai

µ

])

. (3.4)

Indeed, upon taking the limit {ϕ,ϕ, ω, ω, U, V,N,M} → 0, we recover the Yang-Mills

action2 (3.3) and setting all sources equal to zero (q, η, λ) → 0, we find our original

2The term proportional to the equations of motion will be introduced later.
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Gribov-Zwanziger action back, see equation (2.14). Notice that in principle, we could

have taken other possible starting actions which also enjoy these two correct limits. We

could have tried to couple different sources to the different BRST exact terms instead of

employing only one source η. However, this would not lead to a renormalizable action,

while the action (3.4) does turn out to be renormalizable, as we shall prove.

We shall now try to establish the renormalizability of (3.4) by using the algebraic

renormalization formalism [37].

The first step is to introduce two auxiliary terms necessary for the process of renor-

malization. Firstly, we add an additional external term Sext,1 to the action,

Sext,1 =

∫
ddx

(
−Ka

µDab
µ cb +

1

2
gLafabccbcc

)
, (3.5)

which is needed to define the nonlinear BRST transformations of the gauge field Aa
µ and

of the ghost field ca. Ka
µ and La are two new BRST invariant sources which shall be set

equal to zero in the end,

Ka
µ

∣∣
phys

= 0 , La|phys = 0 . (3.6)

Therefore, these sources can be seen as two auxiliary sources which do not change the

physics of the theory. Secondly, we also introduce the following external term,

Sext,2 =

∫
ddxs(XiA

a
µ∂ωa

i )=

∫
ddxYiA

a
µ∂ωa

i −

∫
ddx

(
XiD

ab
µ cb∂µωa

i + XiA
a
µ∂µϕa

i

)
, (3.7)

whereby (Xi, Yi) is a new doublet of sources, i.e. sXi = Yi. This additional term is necessary

in order to have a sufficient powerful set of Ward identities. Without this term, two Ward

identities of the original Gribov-Zwanziger action would be broken which are absolutely

indispensable for the proof a the renormalization of the action (see Ward identity 8. and

9. in the list below). Again, in the end, we shall set

Xi|phys = 0 , Yi|phys = 0 , (3.8)

We shall thus continue the analysis with the following action

Σ = Σglue + Sext,1 + Sext,2 . (3.9)

The second step is to search for all the Ward identities obeyed by the classical action

Σ. Doing so, we find the following list of identities:

1. The Slavnov-Taylor identity:

S(Σ) = 0 , (3.10)

where

S(Σ) =

∫
ddx

(
δΣ

δKa
µ

δΣ

δAa
µ

+
δΣ

δLa

δΣ

δca
+ ba δΣ

δca + ϕa
i

δΣ

δωa
i

+ωa
i

δΣ

δϕa
i

+ Mai
µ

δΣ

δUai
µ

+ Nai
µ

δΣ

δV ai
µ

+ λ
δΣ

δη
+ Yi

δΣ

δXi

)
. (3.11)

This identity is a functional translation of the BRST invariance s.
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2. The U(f) invariance:

UijΣ = 0 , (3.12)

with

Uij =

∫
ddx

(

ϕa
i

δ

δϕa
j

− ϕa
j

δ

δϕa
i

+ ωa
i

δ

δωa
j

− ωa
j

δ

δωa
i

− Maj
µ

δ

δMai
µ

− Uaj
µ

δ

δUai
µ

+Nai
µ

δ

δNaj
µ

+ V ai
µ

δ

δV aj
µ

+ Y i δ

δY j
+ Xi δ

δXj

)

. (3.13)

Using Qf = Uii, we can associate an extra quantum number to the i-valued fields

and sources. One can find all quantum numbers in table 1 and table 2.

3. The Landau gauge condition:

δΣ

δba
= ∂µAa

µ − ∂µ(ηAa
µ) . (3.14)

4. The modified antighost equation:

δΣ

δca + ∂µ
δΣ

δKa
µ

− ∂µ

(
η

δΣ

δKa
µ

)
= ∂(λA) . (3.15)

5. The ghost Ward identity:

GaΣ = ∆a
cl , (3.16)

with

Ga =

∫
ddx

(
δ

δca
+ gfabc

(
cb δ

δbc
+ ϕb

i

δ

δωc
i

+ ωb
i

δ

δϕc
i

+ V bi
µ

δ

δN ci
µ

+ U bi
µ

δ

δM ci
µ

))
.

(3.17)

6. Two linearly broken local constraints:

δΣ

δϕai
+ ∂µ

δΣ

δMai
µ

= gfabcAb
µV ci

µ − ηgfabcAb
µV ci

µ − ∂µ(XiA
a
µ) ,

δΣ

δωai
+ ∂µ

δΣ

δNai
µ

− gfabcωbi δΣ

δbc
= gfabcAb

µU ci
µ − ηgfabcAb

µU ci
µ . (3.18)

7. The exact Rij invariance:

RijΣ = 0 , (3.19)

with

Rij =

∫
ddx

(

ϕa
i

δ

δωa
j

− ωa
j

δ

δϕa
i

+ V ai
µ

δ

δNaj
µ

− Uaj
µ

δ

δMai
µ

− Xi δ

δY j

)

.
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Aa
µ ca ca ba ϕa

i ϕa
i ωa

i ωa
i

dimension 1 0 2 2 1 1 1 1

ghost number 0 1 −1 0 0 0 1 −1

Qf -charge 0 0 0 0 1 −1 1 −1

Table 1. Quantum numbers of the fields.

Uai
µ Mai

µ Nai
µ V ai

µ Ka
µ La q η λ Xi Y i

dimension 2 2 2 2 3 4 0 0 0 1 1

ghost number −1 0 1 0 −1 −2 0 0 1 0 1

Qf -charge −1 −1 1 1 0 0 0 0 0 1 1

Table 2. Quantum numbers of the sources.

8. An extra integrated Ward identity:

∫
ddx

(
δ

δλ
− η

δ

δλ
+ ca δ

δba
+ Uai

µ

δ

δMai
µ

+ ωa
i

δ

δϕa
i

− Xi
δ

δYi

)
Σ = 0 , (3.20)

which expresses in functional form the BRST exactness of the operator coupled to λ.

9. The integrated Ward identity:

∫
ddx

(
ca δ

δωai
+ ωai δ

δca + Uai
µ

δ

δKa
µ

− ηUai
µ

δ

δKa
µ

− λ
δ

δYi

)
Σ = 0 . (3.21)

10. The X-and Y -Ward identities:
∫

ddx

[
(1 − η)

δ

δXi
− λ

δ

δY i
+ ωa

i

δ

δca + ϕa
i

δ

δba

]
Σ = 0 ,

∫
ddx

[
(1 − η)

δ

δY i
+ ωa

i

δ

δba

]
Σ = 0 . (3.22)

Let us stress here that it is of paramount importance to have a good set of Ward

identities to start from. For the construction of the action Σ, one should keep in mind

the limits to the ordinary Gribov-Zwanziger case and to the Yang-Mills action with the

inclusion of the glueball term. It is logical that an identity which plays a crucial role in

one of the two limit cases, should not be broken by the action Σ, as Σ can be seen as

an enlargement of the two limit cases. This is the reason why we have introduced Sext,2.

Without the auxiliary sources Xi and Yi, the extra integrated Ward identity (3.20) and the

integrated Ward identity (3.21) are broken, and without these two identities one cannot

prove the renormalizability of the action in an algebraic way. Let us also mention that in the

ordinary Gribov-Zwanziger case, we have two extra linearly broken constraints, belonging

to the set of Ward identities in equation (3.18). However, it is not a problem that these

two identities are broken, as the other two linearly broken constraints in equation (3.18)

turn out to be equivalent at the level of the algebraic renormalization, namely: they have

the same effect on the counterterm.
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Subsequently, we are ready to turn to quantum level. The third step is to characterize

the most general integrated local counterterm Σc which can be freely added to all orders

of perturbation theory. Σc is however restricted due to the existence of the Ward identi-

ties. Let us investigate these restrictions a bit closer. The classical action changes under

quantum corrections according to

Σ → Σ + hΣc , (3.23)

whereby h is the perturbation parameter. Demanding that the perturbed action (Σ+hΣc)

fulfills the same set of Ward identities obeyed by Σ, see [37], it follows that the counterterm

Σc is constrained by:

1. The linearized Slavnov-Taylor identity:

BΣΣc = 0 , (3.24)

where BΣ is the nilpotent linearized Slavnov-Taylor operator,

BΣ =

∫
ddx

(
δΣ

δKa
µ

δ

δAa
µ

+
δΣ

δAa
µ

δ

δKa
µ

+
δΣ

δLa

δ

δca
+

δΣ

δca

δ

δLa
+ ba δ

δca + ϕa
i

δ

δωa
i

+ ωa
i

δ

δϕa
i

+Mai
µ

δ

δUai
µ

+ Nai
µ

δ

δV ai
µ

+ λ
δ

δη
+ Y i δ

δXi

)
,

and

BΣBΣ = 0 . (3.25)

2. The U(f) invariance:

UijΣ
c = 0 . (3.26)

Uij is given in expression (3.13).

3. The Landau gauge condition

δΣc

δba
= 0 . (3.27)

4. The modified antighost equation:

δΣc

δca + ∂µ
δΣc

δKa
µ

− ∂µ

(
η

δΣc

δKa
µ

)
= 0 . (3.28)

5. The ghost Ward identity:

GaΣc = 0 , (3.29)

with

Ga =

∫
ddx

(
δ

δca
+ gfabc

(
cb δ

δbc
+ ϕb

i

δ

δωc
i

+ ωb
i

δ

δϕc
i

+ V bi
µ

δ

δN ci
µ

+ U bi
µ

δ

δM ci
µ

))
. (3.30)
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6. The linearly broken local constraints:

δΣc

δϕai
+ ∂µ

δΣc

δMai
µ

= 0 ,

δΣc

δωai
+ ∂µ

δΣc

δNai
µ

− gfabcωbi δΣ
c

δbc
= 0 . (3.31)

7. The exact Rij symmetry:

RijΣ
c = 0 . (3.32)

8. The extra integrated Ward identity:

∫
ddx

(
δ

δλ
− η

δ

δλ
+ ca δ

δba
+ Uai

µ

δ

δMai
µ

+ ωa
i

δ

δϕa
i

− Xi
δ

δYi

)
Σc = 0 . (3.33)

9. The integrated Ward identity:

∫
ddx

(
ca δ

δωai
+ ωai δ

δca + Uai
µ

δ

δKa
µ

− ηUai
µ

δ

δKa
µ

− λ
δ

δYi

)
Σc = 0 . (3.34)

10. The X-and Y -Ward identities:
∫

ddx

[
(1 − η)

δ

δXi
− λ

δ

δY i
+ ωa

i

δ

δca + ϕa
i

δ

δba

]
Σc = 0 ,

∫
ddx

[
(1 − η)

δ

δY i
+ ωa

i

δ

δba

]
Σc = 0 . (3.35)

At this point, we are ready to determine the most general integrated local polynomial Σc in

the fields and external sources of dimension bounded by four and with zero ghost number,

limited by the constraints (3.24)–(3.35). The linearized Slavnov-Taylor identity plays an

important role in simplifying the form of the counterterm. Indeed, the counterterm can be

parameterized as follows:

Σc = (BΣ closed but not exact part)︸ ︷︷ ︸
Σc

1

+BΣ∆−1

︸ ︷︷ ︸
Σc

2

, (3.36)

whereby Σc
1 is a cohomologically non-trivial part while Σc

2 represents the cohomologically

trivial part. ∆−1 is the most general local polynomial with dimension 4 and ghost number

−1. One can prove that all fields and sources belonging to a doublet can only enter the

cohomologically trivial part [37]. This is exactly the reason why we have opted to introduce

the source η, which is coupled to the BRST exact term, as part of a doublet. In this way,

the source η can only enter the trivial part, and turns out to be useful to explicitly prove

the upper triangular form of the mixing matrix in equation (3.2). One can now check that

the closed but not exact part is given by

Σc
1 = a0SYM + b0ŜYM , (3.37)

– 13 –



J
H
E
P
0
8
(
2
0
0
9
)
1
1
0

whereby

ŜYM =

∫
ddxq

1

4
F a

µνF a
µν , (3.38)

and the trivial part is given by the following rather lengthy expression:

Σc
2 = BΣ

∫
ddx

{[
a1(K

a
µ + ∂µca)Aa

µ + a2 Laca + a3U
a
µi ∂µϕa

i + a4 V a
µi ∂µωa

i + a5 ωa
i ∂

2ϕa
i

+a6 Ua
µiV

a
µi + a7 gfabcUa

µi ϕb
iA

c
µ + a8 gfabcV a

µi ω
b
iA

c
µ

+a9 gfabcωa
i A

c
µ ∂µϕb

i + a10 gfabcωa
i (∂µAc

µ)ϕb
i + a11X

iωa
i ∂Aa

µ

+a12X
i∂ωa

i A
a
µ + a13X

iϕa
i c

a

+a14gfabcX
iωa

i ωb
jω

c
j + a′14gfabcX

iωa
j ωb

iω
c
j + a15X

iωa
i b

a + a16X
iU ia

µ Aa
µ

a17gfabcX
iωa

i ϕ
b
jϕ

c
j + a′17gfabcX

iωa
j ϕ

b
iϕ

c
j + +a′′17gfabcX

iωa
j ϕ

b
jϕ

c
i

+a18gfabcX
iωa

i c
bcc + a19X

iXiϕa
jω

a
j + a′19X

iXjϕa
i ω

a
j + a20X

iY jωi
aω

j
a

+a21gfabcY
iωa

i ω
b
jϕ

c
j + a′21gfabcY

iωa
jω

b
jϕ

c
i + a22Y

iωa
i c

a

]

+q

[
b1(K

a
µ + ∂µca)Aa

µ + c1c
a∂µAa

µ + b2L
aca + b3U

a
µi ∂µϕa

i + c3∂µUa
µiϕ

a
i

+b4V
a
µi ∂µωa

i + c4∂µV a
µi ω

a
i + b5ω

a
i ∂

2ϕa
i + c5∂µωa

i ∂µϕa
i + d5∂

2ωa
i ϕ

a
i + b6 Ua

µiV
a
µi

+b7gfabcUa
µi ϕb

iA
c
µ + b8gfabcV a

µi ωb
iA

c
µ + b9gfabcωa

i A
c
µ ∂µϕb

i + c9gfabcωa
i (∂µAc

µ)ϕb
i

+d9gfabc∂µωa
i A

c
µϕb

i + b10X
iωa

i ∂Aa
µ + c10X

i∂ωa
i A

a
µ + d10∂Xiωa

i A
a
µ

+b11X
iϕa

i c
a + b12gfabcX

iωa
i ωb

jω
c
j + b′12gfabcX

iωa
j ωb

iω
c
j + b13X

iωa
i b

a

+b14X
iU ia

µ Aa
µ + b15gfabcX

iωa
i ϕ

b
jϕ

c
j + b′15gfabcX

iωa
j ϕ

b
iϕ

c
j + b′′15gfabcX

iωa
jϕ

b
jϕ

c
i

+b16gfabcX
iωa

i c
bcc + b17X

iXiϕa
j ω

a
j + b′17X

iXjϕa
i ω

a
j + b18X

iY jωi
aω

j
a

+b19gfabcY
iωa

i ω
b
jϕ

c
j + b′19gfabcY

iωa
jω

b
jϕ

c
i + b20Y

iωa
i c

a

]

+η

[
e1K

a
µAa

µ + e′1∂µcaAa
µ + f1c

a∂µAa
µ + e2L

aca + e3U
a
µi ∂µϕa

i + f3∂µUa
µiϕ

a
i

+e4V
a
µi ∂µωa

i + f4∂µV a
µi ωa

i + e5 ωa
i ∂

2ϕa
i + f5∂µωa

i ∂µϕa
i + g5∂

2ωa
i ϕ

a
i + e6 Ua

µiV
a
µi

+e7gfabcUa
µi ϕb

iA
c
µ + e8gfabcV a

µi ωb
iA

c
µ + e9gfabcωa

i A
c
µ ∂µϕb

i + f9gfabcωa
i (∂µAc

µ)ϕb
i

+g9gfabc∂µωa
i A

c
µϕb

i + e10X
iωa

i ∂Aa
µ + f10X

i∂ωa
i A

a
µ + g10∂Xiωa

i A
a
µ + e11X

iϕa
i c

a

+e12gfabcX
iωa

i ωb
jω

c
j + e′12gfabcX

iωa
j ωb

iω
c
j + e13X

iωa
i b

a + e14X
iU ia

µ Aa
µ

+e15gfabcX
iωa

i ϕ
j
bϕ

j
c + e′15gfabcX

iωa
j ϕ

b
iϕ

c
j + e′′15gfabcX

iωa
jϕ

b
jϕ

c
i + e16gfabcX

iωa
i c

bcc

+e17X
iXiϕa

j ω
a
j + e′17X

iXjϕa
i ω

a
j + e18X

iY jωi
aω

j
a + e19gfabcY

iωa
i ω

b
jϕ

c
j

+e′19gfabcY
iωa

jω
b
jϕ

c
i + e20Y

iωa
i c

a

]

λ

[
h1gfabcX

iϕajωb
iω

c
j + h′

1gfabcX
iϕaiωb

jω
c
j + h2X

icaωa
i + h3ω

a
i ω

b
jϕ

a
i ϕ

b
j

+(variants of h3)

]}
. (3.39)
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The coefficients ai, a′i, etc. are a priori free parameters.

As the attentive reader might have noticed, we did not include terms of the form

(q2 . . .), (η2 . . .), (qη . . .), (q3 . . .), (λq2 . . .) etc., into the counterterm. However, by just

looking at the dimensionality, the ghost number and the constraints on the counterterm,

one might conclude that certain terms of quadratic and higher order in the sources (q, η,

λ) are perfectly allowed. One can imagine that an infinite tower of counterterms would

then be generated and thence it would be impossible to prove the renormalizability of

the action as new divergences are always being generated, which cannot be absorbed in

terms already present in the classical action. However, we can give a simple argument

why one may omit this class of terms with the help of an example. Assume that we would

introduce the following term of order q2 in the action,

∼

∫
ddxq2 F 2

µν

4
. (3.40)

Subsequently, when calculating the correlator, this term would give rise to an extra contact

term contribution,

[
δ

δq(z)

δ

δq(y)

∫
[dφ]e−Σ

]

q=0

=

〈
F 2(z)

4

F 2(y)

4

〉

︸ ︷︷ ︸
term due to part in q

+ δ(y − z)

〈
F 2(y)

2

〉

︸ ︷︷ ︸
term due to part in q2

. (3.41)

Eventually, we are only interested in the correlator for z 6= y and therefore we can neglect

the term (3.40) quadratic in the source q. Moreover, when studying the case z = y, one

should also couple a source to the novel composite operator F 4 ≡ F 2
µνF 2

αβ , which is not in

our current interest. We can repeat this argument for all the terms which are zero in the

physical limit. Therefore, this argument is not only valid for the dimensionless sources q,

η and λ, but also for the massive sources Kµ, Lµ, Xi, Yi. Though, some care needs to be

taken. Let us explain this again with an example. The modified antighost equation has

the following form:

δΣc

δca + ∂µ
δΣc

δKa
µ

− ∂µ

(
η

δΣc

δKa
µ

)
= 0 . (3.42)

In this case, due to the term ∂µ
δΣc

δKa
µ
, one compares terms of quadratic order in the sources

∼ qKµ . . ., with terms of first order in the sources ∼ q . . .. This identity can never be

fulfilled is one immediately omits all terms of quadratic order in Ka
µ. Therefore, we have

chosen to keep all the possible combinations of higher order in the massive sources in the

counterterm (3.39) as there are only a finite number of combinations, while keeping in

mind the higher order combinations of the dimensionless sources. Only after imposing all

the constraints, we can then safely neglect the terms quadratic in the sources.

With the previous remark in mind, we can now impose all the constraints (3.26)–(3.35)
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on the counterterm, which is a very cumbersome job. We ultimately find

Σc = a0SY M + b0ŜY M + a1

∫
ddx

(

Aa
µ

δSY M

δAa
µ

+ Aa
µ

δŜY M

δAa
µ

+ ∂µca∂µca + Ka
µ∂µca

+Mai
µ ∂µϕai

µ − Uai
µ ∂µωai

µ Nai
µ ∂µωai

µ + V ai
µ ∂µϕai

µ

+∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ + V ai
µ Mai

µ − Uai
µ Nai

µ

−gfabcU
ia
µ ϕbi∂µcc − gfabcV

ia
µ ωbi∂µcc

−gfabc∂µωaϕbi∂µcc

)

+b1

∫
ddxq

(

Aa
µ

δSY M

δAa
µ

+ ∂µca∂µca + Ka
µ∂µca + Mai

µ ∂µϕai
µ − Uai

µ ∂µωai
µ

+Nai
µ ∂µωai

µ + V ai
µ ∂µϕai

µ + ∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ + V ai
µ Mai

µ

−Uai
µ Nai

µ − gfabcU
ia
µ ϕbi∂µcc − gfabcV

ia
µ ωbi∂µcc − gfabc∂µωaϕbi∂µcc

)

+a1

∫
ddxη

(

∂µca∂µca + Mai
µ ∂µϕai

µ − Uai
µ ∂µωai

µ + Nai
µ ∂µωai

µ + V ai
µ ∂µϕai

µ

+∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ + V ai
µ Mai

µ − Uai
µ Nai

µ − gfabcU
ia
µ ϕbi∂µcc

−gfabcV
ia
µ ωbi∂µcc − gfabc∂µωaϕbi∂µcc

)

+a1

∫
ddxλ

(

Uai
µ ∂µϕai + V ai

µ ∂µωai + ∂µωai∂µϕai + Uai
µ V ai

µ

)

−a1

∫
ddx

(

Xi∂µωai∂µca

)

. (3.43)

Only now, we can discard the term ∼ qKa
µ∂µca as it is of quadratic order in the sources.

One could argue that we can also neglect terms of higher order in Uai
µ and Nai

µ . However,

both sources belong to a BRST doublet. Moreover, the corresponding partner sources,

Mai
µ , V ai

µ , acquire a nonzero value in the physical limit, and it would be impossible to write

the BRST exact term in our starting action Σglue (see expression (3.4)) as an s-variation

when neglecting these kind of terms. In summary, the expression

Σc = a0SY M + b0ŜY M + a1

∫
ddx

(
Aa

µ

δSY M

δAa
µ

+ Aa
µ

δŜY M

δAa
µ

+ ∂µca∂µca + Ka
µ∂µca

+Mai
µ ∂µϕai

µ − Uai
µ ∂µωai

µ Nai
µ ∂µωai

µ + V ai
µ ∂µϕai

µ

+∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ + V ai
µ Mai

µ − Uai
µ Nai

µ

−gfabcU
ia
µ ϕbi∂µcc − gfabcV

ia
µ ωbi∂µcc

−gfabc∂µωaϕbi∂µcc

)
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+b1

∫
ddxq

(

Aa
µ

δSY M

δAa
µ

+ ∂µca∂µca + Mai
µ ∂µϕai

µ − Uai
µ ∂µωai

µ + Nai
µ ∂µωai

µ + V ai
µ ∂µϕai

µ

+∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ + V ai
µ Mai

µ − Uai
µ Nai

µ − gfabcU
ia
µ ϕbi∂µcc

−gfabcV
ia
µ ωbi∂µcc − gfabc∂µωaϕbi∂µcc

)

+a1

∫
ddxη

(

∂µca∂µca + Mai
µ ∂µϕai

µ − Uai
µ ∂µωai

µ + Nai
µ ∂µωai

µ + V ai
µ ∂µϕai

µ

+∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ + V ai
µ Mai

µ − Uai
µ Nai

µ − gfabcU
ia
µ ϕbi∂µcc

−gfabcV
ia
µ ωbi∂µcc − gfabc∂µωaϕbi∂µcc

)

+a1

∫
ddxλ

(
Uai

µ ∂µϕai + V ai
µ ∂µωai + ∂µωai∂µϕai + Uai

µ V ai
µ

)

−a1

∫
ddx

(

Xi∂µωai∂µca

)

, (3.44)

gives the general counterterm compatible with all Ward identities.

We still need to introduce the operators belonging to the class C3, which are related

to the equations of motion, see section 3.1. Therefore, the next step is to perform a linear

shift on the gluon field Aa
µ in the action Σ

Aa
µ → Aa

µ + αAa
µ , (3.45)

whereby α is a dimensionless new source. As this shift corresponds to a redefinition of

the gluon field it has to be consistently done in the starting action as well as in the

counterterm. Later on, we shall see that introducing the relevant gluon equation of motion

operator through this shift, will allow us to uncover the finiteness of this kind of operator.

Performing the shift in the classical action yields the following shifted action Σ′

Σ′ = SYM +

∫
ddx

(
ba∂µAa

µ + ca∂µDab
µ cb

)
+

∫
ddx

(
−Ka

µ (Dµc)a +
1

2
gLafabccbcc

)

+

∫
ddx

(
ϕa

i ∂νD
ab
ν ϕb

i − ωa
i ∂νDab

ν ωb
i − g∂νωa

i f
abmDbd

ν cdϕm
i

)

+

∫
ddx
(
−Mai

µ Dab
µ ϕb

i − gUai
µ fabcDbd

µ cdϕc
i + Uai

µ Dab
µ ωb

i

−Nai
µ Dab

µ ωb
i − V ai

µ Dab
µ ϕb

i + gV ai
µ fabcDbd

µ cdωc
i − Mai

µ V ai
µ + Uai

µ Nai
µ

)

+

∫
ddxqF a

µνF a
µν +

∫
ddxλ

[
∂µcaAa

µ + ∂ω∂ϕ + gfakb∂ωaAkϕb + UaDabϕb

+V aDabωb + UV
]
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+

∫
ddxη

[
∂µbaAa

µ + ∂µcaDab
µ cb + ∂ϕ∂ϕ − ∂ω∂ω + gfakb∂ϕaAkϕb + gfakb∂ωaDkdcdϕb

−gfakb∂ωaAkωb + Mai
µ (Dµϕi)

a + gUai
µ fabc (Dµc)b ϕc

i

−Uai
µ (Dµωi)

a + Nai
µ (Dµωi)

a − gV ai
µ fabc (Dµc)b ωc

i + V ai
µ (Dµϕi)

a

+Mai
µ V ai

µ − Uai
µ Nai

µ

]
+

∫
ddx

(
YiA

a
µ∂ωa

i − XiD
ab
µ cb∂µωa

i + XiA
a
µ∂µϕa

i

)

+

∫
ddxαAa

µ

δSY M

δAa
µ

+

∫
ddxα

{
−∂µbaAa

µ + gfakbA
k
µcb∂µca

}

+

∫
ddxα

[
−gfakb∂µϕa

i A
k
µϕb + gfakb∂µωa

i A
k
µωb − g2fabmfbkd∂µωaϕmAk

µcd
]

+

∫
ddxα

[
−gfakbM

a
i Ak

µϕb
i + gfakbU

a
i Ak

µωb
i − gfakbN

a
i Ak

µωb
i − gfakbV

a
i Ak

µϕb
i

]

−

∫
ddxα

[
g2fabcfbkdU

a
i ϕcAkcd + g2fabcfbkdV

aωcAkcd
]

. (3.46)

Notice that we have neglected again higher order terms in the sources ∼ (αη . . .), ∼ (αλ . . .)

and ∼ (αq . . .) as the argument (3.41) is still valid. The corresponding counterterm

Σ′c reads:

Σ′c = a0SY M + b0ŜY M + a1

∫
ddx

(
Aa

µ

δSY M

δAa
µ

+ Aa
µ

δŜY M

δAa
µ

+ ∂µca∂µca + Ka
µ∂µca

+Mai
µ ∂µϕai

µ − Uai
µ ∂µωai

µ Nai
µ ∂µωai

µ + V ai
µ ∂µϕai

µ

+∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ + V ai
µ Mai

µ − Uai
µ Nai

µ

−gfabcU
ia
µ ϕbi∂µcc − gfabcV

ia
µ ωbi∂µcc

−gfabc∂µωaϕbi∂µcc

)

+b1

∫
ddxq

(
Aa

µ

δSY M

δAa
µ

+ ∂µca∂µca + Mai
µ ∂µϕai

µ − Uai
µ ∂µωai

µ + Nai
µ ∂µωai

µ + V ai
µ ∂µϕai

µ

+∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ + V ai
µ Mai

µ − Uai
µ Nai

µ − gfabcU
ia
µ ϕbi∂µcc

−gfabcV
ia
µ ωbi∂µcc − gfabc∂µωaϕbi∂µcc

)

+a1

∫
ddxη

(
∂µca∂µca + Mai

µ ∂µϕai
µ − Uai

µ ∂µωai
µ + Nai

µ ∂µωai
µ + V ai

µ ∂µϕai
µ

+∂µϕai∂µϕai
µ + ∂µωai∂µωai

µ + V ai
µ Mai

µ − Uai
µ Nai

µ − gfabcU
ia
µ ϕbi∂µcc

−gfabcV
ia
µ ωbi∂µcc − gfabc∂µωaϕbi∂µcc

)
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+a1

∫
ddxλ

(

Uai
µ ∂µϕai + V ai

µ ∂µωai + ∂µωai∂µϕai + Uai
µ V ai

µ

)

−a1

∫
ddx

(

Xi∂µωai∂µca

)

+ a0

∫
ddx

(

αAa
µ

δSY M

δAa
µ

)

(3.47)

+a1

∫
ddxα

(
2Aa

µ∂µ∂νA
a
ν − 2Aa

µ∂2Aa
µ + 9gfabcA

a
µAb

ν∂µAc
ν + 4g2fabcfcdeA

a
µAb

νAd
µAe

ν

)
,

once more dropping higher order terms in the sources.

The final step in the renormalization procedure is to reabsorb the counterterm Σ′c into

the original action Σ′,

Σ(g, ω, φ,Φ) + hΣc = Σ(g0, ω0, φ0,Φ0) + O(h2) , (3.48)

We set φ = (Aa
µ, ca, ca, ba, ϕa

i , ωa
i , ϕa

i , ωa
i ) and Φ = (Kaµ, La, Mai

µ , Nai
µ , V ai

µ , Uai
µ , λ) and

we define

g0 = Zgg , φ0 = Z
1/2
φ φ , Φ0 = ZΦΦ , (3.49)

while for the other sources we propose the following mixing matrix




q0

η0

α0



 =




Zqq Zqη Zqα

Zηq Zηη Zηα

Zαq Zαη Zαα








q

η

α



 . (3.50)

If we try to absorb the counterterm into the original action, we easily find,

Zg = 1 − h
a0

2
,

Z
1/2
A = 1 + h

(a0

2
+ a1

)
, (3.51)

and

Z
1/2
c = Z1/2

c = Z
−1/4
A Z−1/2

g = 1 − h
a1

2
,

Zb = Z−1
A ,

ZK = Z1/2
c ,

ZL = Z
1/2
A , (3.52)

The results (3.51) are already known from the renormalization of the original Yang-Mills

action in the Landau gauge. Further, we also obtain

Z1/2
ϕ = Z

1/2
ϕ = Z−1/2

g Z
−1/4
A = 1 − h

a1

2
,

Z1/2
ω = Z

−1/2
A ,

Z
1/2
ω = Z−1

g ,

ZM = 1 −
a1

2
= Z−1/2

g Z
−1/4
A ,
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ZN = Z
−1/2
A ,

ZU = 1 + h
a0

2
= Z−1

g ,

ZV = 1 − h
a1

2
= Z−1/2

g Z
−1/4
A , (3.53)

which are known from the original Gribov-Zwanziger action, see [15]. In addition, we also

find the following mixing matrix




Zqq Zqη Zqα

Zηq Zηη Zηα

Zαq Zαη Zαα



 =




1 + h(b0 − a0) 0 0

hb1 1 0

hb1 0 1



 , (3.54)

while for the Z-factor of λ we have

Zλ = Z−1/2
c Z

−1/2
A = Z1/2

g Z
−1/4
A . (3.55)

Also this part was already known, see [23]. So far, we have proven that the two limit cases

are at least correct. Finally, we find the new results

ZY = ZgZ
−1/2
A ,

ZX = Z1/2
g Z

−1/4
A . (3.56)

In summary, the action Σ′ is renormalizable. Moreover, we have only 4 arbitrary parame-

ters, a0, a1, b0, b1, which is the same number as in the limit case {ϕ,ϕ, ω, ω, U, V,N,M} →

0, i.e. the Yang-Mills case with the introduction of the glueball operator ∼ F 2
µν [23]. This

is already a remarkable fact.

3.3 Inclusion of the glueball operator in the Refined Gribov-Zwanziger action

In analogy with [21, 22] we shall add the 2 dimensional mass term ∼ (ϕa
i ϕ

a
i − ωa

i ω
a
i ) to the

action Σglue in equation (3.4),

ΣRglue = Σglue + Σϕϕ + Σen , (3.57)

whereby

Σϕϕ =

∫
ddx (s(−Jωa

i ϕ
a
i )) =

∫
ddx (−J (ϕa

i ϕ
a
i − ωa

i ω
a
i )) ,

Σen =

∫
ddxςΘJ , (3.58)

with J and θ new sources, and ς the parameter already defined in equation (2.20). In order

to agree with the physical action (2.19), we define the following physical limit,

Θ|phys = 2
d(N2 − 1)√

2g2N
γ2 . (3.59)

We further define sJ = 0 and sΘ = 0, hence the BRST invariance is guaranteed.
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Let us now investigate the renormalizability of action ΣRglue. We can go through the

same steps as in the previous section. Therefore, we again add the two external pieces,

Sext,1 and Sext,2 as defined in equation (3.5) and (3.7), to the action ΣRglue

ΣR = ΣRglue + Sext,1 + Sext,2 . (3.60)

Subsequently, one can easily check that all Ward identities (3.12)–(3.19) and (3.22) re-

main unchanged up to potential harmless linear breaking terms. Therefore, the con-

straints (3.26)–(3.32) and (3.35) remain valid. Unfortunately, the extra integrated Ward

identity (3.20) and the integrated Ward identity (3.21) are broken due to the introduction

of the mass term. However, the mass term we have added is not a new interaction as it is

only quadratic in the fields. Therefore, it cannot introduce new divergences to the massless

theory Σ, and it can only influence its own renormalization3 as well as potentially vacuum

terms, i.e. pure source terms. Also, next to Ward identities (3.12)–(3.19) and (3.22), we

have a new identity

δΣR

δΘ
= ςJ , (3.61)

which is translated to the following constraint at the level of the counterterm,

δΣc
R

δΘ
= 0 . (3.62)

As a consequence, Σc
R is independent from the source Θ. Therefore, it follows that the

form of the counterterm Σc
R can be written as

Σc
R = Σc + Σc

J , (3.63)

whereby Σc is the counterterm (3.44) of Σ and Σc
J is depending on J . One can now easily

check that Σc
J = κJ2, with κ a new parameter as this is the only possible combination with

the source J , which does not break the constraints (3.24)–(3.32) and (3.35).

κ is in fact a redundant parameter, as no divergences in J2 will occur, as explained

in [22]. Therefore, the counterterm Σc
R is actually equal to Σc. Defining

J0 = ZJJ , (3.64)

we find

ZJ = Z−1
ϕ = ZgZ

1/2
A , (3.65)

and we have proven the renormalizability of the action Σc′.

3We employ massless renormalization schemes.
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4 The operator mixing matrix to all orders

4.1 Preliminaries

Let us return to the mixing matrix of the sources q, η and J and pass to the the corre-

sponding operators. We have found that




q0

η0

α0



 =




Zqq 0 0

Zαq 1 0

Zαq 0 1








q

η

α



 . (4.1)

We shall further need the inverse of this matrix,




q

η

α



 =





1
Zqq

0 0

−Zαq

Zqq
1 0

−Zαq

Zqq
0 1








q0

η0

α0



 . (4.2)

We can write the final action Σ′ from equation (3.46) in a more condensed form as

Σ′ = ΣGZ + Sext,1 + Sext,2 +

∫
ddx (qF + ηE + αH) +

∫
ddxλN , (4.3)

whereby we have defined the operators

F =
1

4
F a

µνF a
µν ,

E = sN ,

H = Aa
µ

SGZ

Aa
µ

, (4.4)

with

N =
[
∂µcaAa

µ + ∂ω∂ϕ + gfakb∂ωaAkϕb + UaDabϕb + V aDabωb + UV
]

. (4.5)

It is then an easy task to construct the corresponding mixing matrix for the operators

themselves. We recall that insertions of an operator can be obtained by taking derivatives

of the generating functional Zc(q, η, J) w.r.t. to the appropriate source. For example,

F0 ∼
δZc(q, η, α)

δq0
=

δq

δq0

δZc(q, η, α)

δq
+

δη

δq0

δZc(q, η, α)

δη
+

δα

δq0

δZc(q, η, α)

δα
, (4.6)

and thus

F0 =
1

Zqq
F −

Zαq

Zqq
G −

Zαq

Zqq
H , (4.7)

and similarly for E0 and H0. Henceforth, we find




F0

E0

H0



 =




Z−1

qq −ZαqZ
−1
qq −ZαqZ

−1
qq

0 1 0

0 0 1








F

E

H



 . (4.8)
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This is a nice result as we recover the expected upper triangular form. In addition, as E

has a Z-factor equal to 1, we also find that the BRST exact operator E does not mix with

H, although this mixing would in principle be allowed. This can be understood as follows.

The integrated BRST exact operator E is in fact proportional to a sum of four (integrated)

equations of motion terms and two other terms,
∫

d4x
[

∂µbaAa
µ + ∂µcaDab

µ cb + ∂ϕ∂ϕ − ∂ω∂ω + gfakb∂ϕaAkϕb + gfakb∂ωaDkdcdϕb

−gfakb∂ωaAkωb + Mai
µ Dab

µ ϕb
i + gUai

µ fabcDab
µ cbϕc

i − Uai
µ Dab

µ ωb
i + Nai

µ Dab
µ ωb

i

−gV ai
µ fabcDbd

µ cdωc
i + V ai

µ Dab
µ ϕb

i + Mai
µ V ai

µ − Uai
µ Nai

µ

]
(4.9)

= −

∫
d4x

(
ba δΣGZ

δba
+ ca δΣGZ

δca + ϕa δΣGZ

δϕa + ωa δΣGZ

δωa + Mai
µ

δΣGZ

δMai
µ

+ Uai
µ

δΣGZ

δUai
µ

)
,

and therefore, like H, it does not mix with the other operators. Notice that we can rewrite

the integrated BRST operator in two other forms:

(4.9) = −

∫
d4x

(
ba δΣGZ

δba
+ ca δΣGZ

δca + ϕa δΣGZ

δϕa
+ ωa δΣGZ

δωa
+ Nai

µ

δΣGZ

δNai
µ

+ V ai
µ

δΣGZ

δV ai
µ

)
,

(4.10)

or

(4.9) = −

∫
d4x

(
ba δΣGZ

δba
+ ca δΣGZ

δca
+ ϕa δΣGZ

δϕa + ωa δΣGZ

δωa
+ Mai

µ

δΣGZ

δMai
µ

+ Nai
µ

δΣGZ

δNai
µ

)
.

(4.11)

Remark. We can also use the refined action ΣRGZ instead of ΣGZ. We define ΣRGZ as

ΣRGZ = ΣGZ + Σϕϕ + Σen , (4.12)

whereby Σϕϕ and Σen are defined in equation (3.58). Replacing ΣGZ by ΣRGZ does not

alter equation (4.8), but it does slightly modify expression (4.9),

∫
d4xE = −

∫
d4x

(
ba δΣRGZ

δba
+ ca δΣRGZ

δca + ϕa δΣRGZ

δϕa + ωa δΣRGZ

δωa

+Mai
µ

δΣRGZ

δMai
µ

+ Uai
µ

δΣRGZ

δUai
µ

− J
δΣRGZ

δJ
+ Θ

δΣRGZ

δΘ

)
, (4.13)

and analogously for expression (4.10) and (4.11).

4.2 The physical limit

In the next subsection, we shall work in the physical limit as our final intention is to examine

n-point functions with the (Refined) Gribov-Zwanziger action itself. In the physical limit,

E becomes:

E|phys = ∂µbaAa
µ + ∂µcaDab

µ cb + ∂µϕa
i D

ab
µ ϕb

i − ∂µωa
i D

ab
µ ωb

i + gfabc∂µωa
i D

bd
µ cdϕc

i

+γ2Dab
µ (ϕba

µ + ϕba
µ ) + d

(
N2 − 1

)
γ4 . (4.14)
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From this point, we can omit the constant term d
(
N2 − 1

)
γ4 as it shall not play a role

in the calculation of the glueball correlator. Later, we shall determine the renormalization

group invariant R(x) which contains F 2
µν(x). As E mixes with F 2

µν(x), this renormalization

group invariant shall also contain this constant term. However, a constant term can never

contribute to the final glueball correlator 〈R(x)R(y)〉 as it can never help to produce

connected diagrams between the two space time points x and y. Therefore, we shall

simplify the calculations by omitting this term already from this point.

In the physical limit H is given by

H|phys = Aa
µ

δSGZ

δAa
µ

, (4.15)

whereby SGZ is the physical Gribov-Zwanziger action (2.6). Naturally, the mixing ma-

trix (4.8) stays valid in this physical limit.

4.3 The mixing matrix to all orders

It this section, we shall determine the mixing matrix (4.8) to all orders. This proof is very

elegant as it does not require to calculate any loop diagrams, and it is purely based on

algebraic manipulations. We shall extend the proof given in [23], which is based on [38].

Moreover, as a byproduct, the proof shall also reveal some identities between the anomalous

dimensions of the different fields, which can serve as a check on relations as in (3.52)

and (3.53). We shall directly work with the physical action SGZ. In the end, we shall also

look at the Refined Gribov-Zwanziger action, SRGZ.

We start our analysis with the following generic n-points function

Gn(x1, . . . , xn) = 〈φi(x1) . . . φj(xn)〉 =

∫
[dφ]φi(x1) . . . φj(xn)e−SGZ , (4.16)

whereby φi, i = 1 . . . 8 stands for one of the eight fields (Aa
µ, ca, ca, ba, ϕab

µ , ωab
µ , ϕab

µ , ωa
i ),

i.e φ1 = Aµ, . . ., φ8 = ωab
µ . We shall immediately omit the vacuum term γ4(N2 − 1)d in

the action SGZ, as it is relevant only for the calculation of the vacuum energy and not for

the calculation of n-points functions. The total number of fields is given by n,

n =

8∑

i

ni , (4.17)

with ni the number of fields φi present in the n-points function (4.16). We are therefore

considering the path integral for a random combination of fields. Subsequently, from the

definition (4.16), we can immediately write down the connection between the renormalized

Green function and the bare Green function, which is, in a very condensed notation,

Gn =

8∏

i=1

Z
−ni/2
φi

Gn
0 . (4.18)

From the previous equation, we shall be able to fix all the matrix elements of expres-

sion (4.8), based on the knowledge that dGn

dg2 must be finite in a renormalized theory.
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We shall therefore calculate this quantity. The first step is to apply the chain rule:

dGn

dg2
=

8∑

j=1




∂Z

−nj/2
φj

∂g2

∏

i6=j

Z
−ni/2
φi



Gn
0 +

8∏

i=1

Z
−ni/2
φi

[
∂g2

0

∂g2

∂

∂g2
0

+
∂γ2

0

∂g2

∂

∂γ2
0

]
Gn

0 . (4.19)

Next, we need to calculate the derivatives w.r.t. g2.

• Firstly, we need to find ∂g2
0/∂g2. We employ dimensional regularization, with d =

4 − ε. If we derive

g2
0 = µεZ2

gg2 , (4.20)

w.r.t. µ and g2, combine these two equations and employ the following definition of

the β-funtion4

µ
∂g2

∂µ
= −εg2 + β(g2) , (4.21)

we obtain

∂g2
0

∂g2
=

−εg2
0

−εg2 + β(g2)
. (4.22)

• Secondly, we calculate
∂γ2

0

∂g2 . We start from

γ2
0 = Zγ2γ2 (4.23)

whereby Zγ2 = ZV = ZM due to the limit (2.17). Deriving this equation

w.r.t. g2 yields

∂γ2
0

∂g2
=

∂Zγ2

∂g2
γ2 =

∂ ln Zγ2

∂g2
γ2
0 =

1

µ

∂µ

∂g2
µ

∂ lnZγ2

∂µ
γ2
0 =

1

−εg2 + β(g2)
δγ2γ2

0 , (4.24)

and we have defined the anomalous dimension of γ2 as

δγ2 = µ
∂ ln Zγ2

∂µ
. (4.25)

• Finally, we search for ∂Z
−nj/2
φj

/∂g2. Applying the chain rule gives

∂Z
−nj/2

φj

∂g2
= −nj

Z
−nj/2

φj

Z
1/2
φj

∂Z
1/2
φj

∂g2
= − njZ

−nj/2

φj

∂ ln Z
1/2
φj

∂g2
. (4.26)

Next, we derive
∂ lnZ

1/2

φj

∂g2 from the definition of the anomalous dimension,

γφj = µ
∂ ln Z

1/2
φj

∂µ
= µ

∂g2

∂µ

∂ ln Z
1/2
φj

∂g2
=
(
−εg2 + β(g2)

) ∂ ln Z
1/2
φj

∂g2
. (4.27)

4We have immediately extracted the part in ε.
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From expression (4.26) and (4.27), it now follows

∂Z
−nj/2

φj

∂g2
= −njZ

−nj/2

φj

γφj

−εg2 + β(g2)
. (4.28)

Inserting equation (4.22) and (4.28) into expression (4.19), we find:

dGn

dg2
=

∏
i Z

−ni/2
φi

−εg2 + β(g2)



−
8∑

j=1

njγφj − εg2
0

∂

∂g2
0

+ δγ2γ2
0

∂

∂γ2
0



Gn
0 . (4.29)

The right hand side still contains bare and therefore divergent quantities. We would like

to rewrite all these quantities in terms of finite quantities so that we can use the finiteness

of the left hand side to make observations on the right hand side. Also, we should rewrite

in some manner the number nj as the mixing matrix (4.8) is obviously independent from

these arbitrary numbers.

Therefore, as a second step, we shall rewrite the right hand side of (4.29) in terms of

a renormalized quantity. Firstly, we calculate ∂
∂g2

0

Gn
0 . Using

∂e−SGZ

∂g2
0

= −

∫
d4y

(

−
1

g2
0

(
F 2

0 (y)

4

)
(4.30)

+
1

2g2
0

(
A0(y)

δSGZ

δA0(y)
− b0(y)

δSGZ

δb0(y)
+ ω0(y)

δSGZ

δω0(y)
− ω0(y)

δSGZ

δω0(y)

))
e−SGZ ,

we can write,

g2
0

dGn
0

dg0
=

∫
d4y

(
Gn

0

{
F 2

0 (y)

4

}
−

1

2
Gn

0

{
A0(y)

δSGZ

δA0(y)

}
+

1

2
Gn

0

{
b0(y)

δSGZ

δb0(y)

}

−
1

2
Gn

0

{
ω0(y)

δSGZ

δω0(y)

}
+

1

2
Gn

0

{
ω0(y)

δSGZ

δω0(y)

})
. (4.31)

We have introduced a shorthand notation for an insertion in the n-points function, e.g.

Gn
0

{
F 2

0 (y)

4

}
=

〈
F 2

0 (y)

4
φi(x1) . . . φj(zn)

〉
. (4.32)

Secondly, we analogously find

γ2
0

∂

∂γ2
0

Gn
0 =

∫
d4y

(
Gn

0

{
γ2
0g0f

abcAa
µ,0ϕ

bc
µ,0 + γ2

0g0f
abcAa

µ,0ϕ
bc
µ,0

})
. (4.33)

Thirdly, we rewrite njG
n
0 by inserting the corresponding counting operator5 into the

Green function,

njG
n
0 =

∫
d4yGn

0

{
φj

0(y)
δSGZ

δφj
0(y)

}
. (4.34)

5It is easily checked that
R

d4yφ
j
0

δ

δφ
j
0

counts the number of φ
j
0

insertions.
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Inserting (4.31), (4.33) and (4.34) into our main expression (4.29) results in

dGn

dg2
=

1

−εg2 + β(g2)

∫
ddy

[

−
8∑

j=1

γφjGn

{
φj

0(y)
δSGZ

δφj
0(y)

}
− εGn

{
F 2

0 (y)

4

}

+
ε

2
Gn

{
A0(y)

δSGZ

δA0(y)

}
−

ε

2
Gn

{
b0(y)

δSGZ

δb0(y)

}
+

ε

2
Gn

{
ω0(y)

δSGZ

δω0(y)

}
(4.35)

−
ε

2
Gn

{
ω0(y)

δSGZ

δω0(y)

}
+ δγ2Gn

{
γ2
0g0f

abcAa
µ,0ϕ

bc
µ,0 + γ2

0g0f
abcAa

µ,0ϕ
bc
µ,0

}]
.

Notice that we have also absorbed the factor
∏

i Z
−ni/2
φi

into the Green functions, and

therefore we can replace Gn
0 again by Gn. Finally, we need to rewrite all the inserted

operators in the n-points function Gn in terms of their renormalized counterparts. For this

we return to the mixing matrix (4.8) and parameterize it as follows




F0

E0

H0



 =




1 + a

ε − b
ε − b

ε

0 1 0

0 0 1








F

E

H



 . (4.36)

Here we have displayed the fact that the entries associated with a(g2, ε) and b(g2, ε), which

represent a formal power series in g2, must at least have a simple pole in ε. Therefore, we

can rewrite

− εF0(y) =
F 2

0 (y)

4
= (−ε − a)F(y) + b E(y)|phys + bA(y)

δSGZ

δA(y)
,

H0|phys = A0(y)
δSGZ

δA0(y)
= A(y)

δSGZ

δA(y)
, (4.37)

whereby we recall that we are working in the physical limit and we have replaced H|phys

by the expression (4.15). Subsequently,

γ2
0g0f

abcAa
µ,0ϕ

bc
µ,0 = γ2gfabcAa

µϕbc
µ ,

γ2
0g0f

abcAa
µ,0ϕ

bc
µ,0 = γ2gfabcAa

µϕbc
µ , (4.38)

as one can check with the Z-factors in (3.53). Finally, all the other operators are equations

of motion terms, which appear in expression (4.9), (4.10) and (4.11) and therefore have the

same Z-factor as the operator E , i.e. Z = 1. Summarizing, expression (4.35) becomes:

dGn

dg2
=

1

−εg2 + β(g2)

∫
ddy

[
(−ε − a)Gn {F} +

(ε

2
+ b − γA

)
Gn

{
A

δSGZ

δA

}

+
(
−

ε

2
− γb − b

)
Gn

{
b(y)

δSGZ

δb(y)

}
(−γc − b)Gn

{
c(y)

δSGZ

δc(y)

}

−γcG
n

{
c(y)

δSGZ

δc(y)

}
+
(
−

ε

2
− γω

)
Gn

{
ω(y)

δSGZ

δω(y)

}

+
(ε

2
− γω

)
Gn

{
ω(y)

δSGZ

δω(y)

}
− γϕG

n

{
ϕ(y)

δSGZ

δϕ(y)

}
− γϕG

n

{
ϕ(y)

δSGZ

δϕ(y)

}
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+bGn
{

∂µϕa
i D

ab
µ ϕb

i − ∂µωa
i D

ab
µ ωb

i + gfabc∂µωa
i D

bd
µ cdϕc

i + γ2gfabcAa
µϕbc

µ

+γ2gfabcAa
µϕbc

µ

}
+ δγ2Gn

{
γ2gfabcAa

µϕbc
µ + γ2gfabcAa

µϕbc
µ

}]

. (4.39)

where we have immediately taken the full expression of E |phys in equation (4.14).

From expression (4.39), we can determine a(g2, ε) and b(g2, ε). As dGn

dg2 is a finite ex-

pression, we know that the right hand side of equation (4.39) must also be finite. Therefore,

as all the Green functions are expressed in terms of finite quantities, we can choose a set

of linearly independent terms and demand that their coefficients are finite:

Gn {F} :
−ε − a

−εg2 + β(g2)
, Gn

{
A

δSGZ

δA

}
:
ε/2 + b − γA(g2)

−εg2 + β(g2)
, (4.40)

Gn {b∂µAµ} :
− ε

2 − γb − b

−εg2 + β(g2)
, Gn

{
ca∂µDab

µ cb
}

:
−γc − b − γc

−εg2 + β(g2)
, (4.41)

Gn
{

ϕa
i ∂µDab

µ ϕb
i

}
:
−γϕ − γϕ − b

−εg2 + β(g2)
, Gn

{
ωa

i ∂µDab
µ ωb

i

}
:
−γω − γω − b

−εg2 + β(g2)
, (4.42)

Gn
{
−gfabc∂νω

a
i D

bd
ν cdϕc

i

}
:
−γc − γω − γϕ + ε

2 − b

−εg2 + β(g2)
, (4.43)

Gn
{
−γ2gfabcAa

µϕbc
}

:
−γϕ − δγ2 − b

−εg2 + β(g2)
, Gn

{
−γ2gfabcAa

µϕbc
}

:
−γϕ − δγ2 − b

−εg2 + β(g2)
. (4.44)

We can rewrite the coefficients of Gn {F} and Gn
{

A δSGZ

δA

}
in (4.40) as

−ε − a

−εg2 + β(g2)
=

1

g2

(1 + a/ε)

1 − β(g2)/(εg2)
,

ε/2 + b − γA(g2)

−εg2 + β(g2)
= −

1

2g2

1 + 2(b − γA(g2))/ε

1 − β(g2)/(εg2)
.

(4.45)

Hence, in order to be finite, we must conclude that

a(g2, ε) = −
β(g2)

g2
,

b(g2, ε) = γA(g2) −
1

2

β(g2)

g2
. (4.46)

Notice that a and b depends on g2, but not on ε. Therefore, the matrix elements of the

first row of the parametrization (4.57) only display a simple pole in ε.

Moreover, from the other equations we shall obtain relations between the anomalous

dimensions of the fields and sources. Let us start with the coefficient of Gn {b∂µAµ} in

equation (4.41), yielding

−ε/2 − b − γb(g
2)

−εg2 + β(g2)
=

1

2g2

1 + 2(b + γb(g
2))/ε

1 − β(g2)/(εg2)
, (4.47)

which means that

b(g2, ε) = −γb(g
2) −

1

2

β(g2)

g2
. (4.48)
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Inserting the value of b(g2, ε) from expression (4.46) gives the following relation

γA + γb = 0 . (4.49)

This relation is a translation of the relation Z
1/2
A Z

1/2
b = 1 found in equation (3.52). Indeed,

deriving both sides w.r.t. µ gives

1

Z
1/2
A Z

1/2
b

µ
∂

∂µ

(
Z

1/2
A Z

1/2
b

)
= γA + γb = 0 . (4.50)

Analogously, for the coefficient of Gn
{
ca∂µDab

µ cb
}
, we find

b(g2, ε) = −γc − γc , (4.51)

yielding

γA + γc + γc =
β

2g2
, (4.52)

which is a translation of Z
1/2
c Z

1/2
c Z

1/2
A Zg = 1 as µ

dZg

dµ = − β
2g2 . Next, the coefficients

of (4.42) and (4.43) lead to

γϕ + γϕ + γA =
β

2g2
, γω + γω + γA =

β

2g2
, γc + γω + γϕ + γA =

β

g2
, (4.53)

stemming from

Z1/2
ϕ Z

1/2
ϕ Z

1/2
A Zg = 1 , Z1/2

ω Z
1/2
ω Z

1/2
A Zg = 1 , Z1/2

c Z
1/2
ω Z1/2

ϕ Z
1/2
A Zg = 1 . (4.54)

These relations originate from the relations derived in (3.52) and (3.53). Finally, the

coefficients in equation (4.44) are finite if

− γϕ − δγ2 = − γϕ − δγ2 = b = γA(g2) −
1

2

β(g2)

g2
, (4.55)

or equivalently

Z
1/2
ϕ Z

1/2
A ZgZγ2 = 1 , Z1/2

ϕ Z
1/2
A ZgZγ2 = 1 , (4.56)

which is also fulfilled as Zγ2 = ZV = Z
−1/2
g Z

−1/4
A .

In summary, we have determined to all orders the mixing matrix (4.8). For nota-

tional simplicity, we take the value (4.51) for b and we use the equality γc = γc:

Z =




1 − β(g2)

εg2

2γc

ε
2γc

ε

0 1 0

0 0 1



 . (4.57)

We have encountered numerous checks which show the consistency of our results.
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Remark. This matrix is also valid for the refined action SRGZ. One can repeat the proof

by replacing SGZ with SRGZ and by adding the following term in M2 = J to the game,

Sϕϕ = −M2

∫
ddx (ϕa

i ϕ
a
i − ωa

i ω
a
i ) , (4.58)

see equation (2.20). In the end, expression (4.39) will collect an extra term

dGn

dg2
=

1

−εg2 + β(g2)

∫
ddy

[

(−ε − a)Gn {F} +
(ε

2
+ b − γA

)
Gn

{
A

δSRGZ

δA

}

+
(
−

ε

2
− γb − b

)
Gn

{
b(y)

δSRGZ

δb(y)

}
(−γc − b)Gn

{
c(y)

δSGZ

δc(y)

}

−γcG
n

{
c(y)

δSGZ

δc(y)

}
+
(
−

ε

2
− γω

)
Gn

{
ω(y)

δSGZ

δω(y)

}

+
(ε

2
− γω

)
Gn

{
ω(y)

δSGZ

δω(y)

}
− γϕG

n

{
ϕ(y)

δSGZ

δϕ(y)

}
− γϕG

n

{
ϕ(y)

δSGZ

δϕ(y)

}

+bGn
{
∂µϕa

i D
ab
µ ϕb

i − ∂µωa
i D

ab
µ ωb

i + gfabc∂µωa
i D

bd
µ cdϕc

i

+γ2gfabcAa
µϕbc

µ + γ2gfabcAa
µϕbc

µ

}
+ δγ2Gn

{
γ2gfabcAa

µϕbc
µ + γ2gfabcAa

µϕbc
µ

}

+δM2Gn
{
M2(ϕϕ − ωω)

}
]

, (4.59)

where we have introduced the anomalous dimension of M2,

δM2 = µ
∂ ln ZM2

∂µ
. (4.60)

This leads to the following extra coefficients

Gn
{
−M2ϕa

i ϕ
a
i

}
:
−γϕ − γϕ − δM2

−εg2 + β(g2)
, Gn

{
M2ωa

i ω
a
i

}
:
−γω − γω − δM2

−εg2 + β(g2)
, (4.61)

so that

γϕ + γϕ + δM2 = 0 , γω + γω + δM2 = 0 , (4.62)

or equivalently

Z
1/2
ϕ Z1/2

ϕ ZM2 = 1 , Z
1/2
ω Z1/2

ω Z
1/2
M2 = 1 , (4.63)

which is correct as ZJ = ZM2 = ZgZ
1/2
A , see equation (3.65). All the other relations stay

valid of course.

5 The glueball correlator

5.1 A renormalization group invariant

As the final step of our analysis, we shall try to determine a renormalization group in-

variant operator which contains F ≡
F 2

µν(x)

4 . This is useful as we would want to obtain
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a renormalization group invariant estimate for the the glueball mass, i.e. the pole of the

corresponding correlator. This analysis is completely similar to the one presented in [23],

due to the fact that the mixing matrix Z is exactly the same. However, for the benefit of

the reader, let us repeat the analysis. We define the anomalous dimension matrix Γ of the

mixing matrix Z as

µ
∂

∂µ
Z = Z Γ . (5.1)

With the following derivatives,

µ
∂

∂µ

(
1 −

β/g2

ε

)
=

1

ε

(
εg2 − β

(
g2
)) ∂(β/g2)

∂g2
,

µ
∂

∂µ

2γc

ε
=

1

ε

(
−εg2 + β

(
g2
)) ∂2γc

∂g2
, (5.2)

we obtain

Γ =




g2 ∂(β/g2)

∂g2 −2g2 ∂γc

∂g2 −2g2 ∂γc

∂g2

0 0 0

0 0 0



 . (5.3)

Notice that this anomalous dimension matrix is finite, as it should be. This matrix Γ is

related to the anomalous dimension of the operators, since

X0 = ZX ⇒ 0 = µ
∂Z

∂µ
X + Zµ

∂X

∂µ

⇒ µ
∂X

∂µ
= − ΓX , (5.4)

with

X =




F

E

H



 , X0 =




F0

E0

H0



 . (5.5)

We now have all the ingredients at our disposal to determine a renormalization group

invariant operator. We set

R = kF + ℓE + mH , (5.6)

with k, ℓ and m functions of g2, to be chosen in such a way that

µ
∂

∂µ
R = µ

∂k

∂µ
F − kg2 ∂(β/g2)

∂g2
F + 2kg2 ∂γc

∂g2
E + 2kg2 ∂γc

∂g2
H + µ

∂ℓ

∂µ
E + µ

∂m

∂µ
H = 0 , (5.7)

hence





µ ∂k
∂µ − kg2 ∂(β/g2)

∂g2 = 0 ,

µ ∂ℓ
∂µ + 2kg2 ∂γc

∂g2 = 0 ,

ℓ = m .
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We therefore choose
{

k(g2) = β(g2)
g2 ,

ℓ(g2) = m(g2) = −2γc(g
2) ,

and we conclude that

R =
β(g2)

g2
F − 2γc(g

2)E − 2γc(g
2)H (5.8)

is a renormalization group invariant scalar operator containing F 2
µν , in the case of the

Gribov-Zwanziger action ΣGZ as well as in the case of the refined action ΣRGZ.

5.2 Irrelevance of the terms proportional to the equations of motion

As we have found a renormalization group invariant, the final goal [39] shall be that of

evaluating the glueball correlator

〈R(x)R(y)〉phys =

〈(
β(g2)

g2
F(x) − 2γc(g

2)E(x) − 2γc(g
2)H(x)

)

×

(
β(g2)

g2
F(y) − 2γc(g

2)E(y) − 2γc(g
2)H(y)

)〉

phys

, (5.9)

using the (Refined) Gribov-Zwanziger action. However, this is beyond the scope of the

present article as this calculation shall be far from trivial, even at lowest order.

As usual the equation of motion terms like H will not play a role. Let us demonstrate

this with a simple example,

〈F(x)H(y)〉phys =

〈
F(x)Aa

µ(y)
δSRGZ

δAa
µ(y)

〉

=

∫
[dΦ]F(x)Aa

µ(y)
δSRGZ

δAa
µ(y)

e−SRGZ = −

∫
[dΦ]F(x)Aa

µ(y)
δe−SRGZ

δAa
µ(y)

=

∫
[dΦ]e−SRGZ

δ
(
Aa

µ(y)F(x)
)

δAa
µ(y)

= . . . δ(x − y) + δ(0) 〈F(x)〉 , (5.10)

which is zero as x 6= y and δ(0) = 0 in dimensional regularization. Therefore, expres-

sion (5.9) reduces to,

〈R(x)R(y)〉phys =

(
β(g2)

g2

)2

〈F(x)F(y)〉 +
(
2γc(g

2)
)2

〈E(x)E(y)〉phys

−2γc(g
2)

β(g2)

g2

(
〈F(x)E(y)〉phys + 〈E(x)F(y)〉phys

)
. (5.11)

6 Summary and discussion of the relevance of the soft BRST breaking

In this paper, we have scrutinized the glueball operator F ≡
F 2

µν

4 using the (Refined)

Gribov-Zwanziger action SGZ (SRGZ). For this, we have followed the framework of an
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earlier work [23] where we have investigated this operator for the more simple case of the

usual Yang-Mills gauge theory, quantized in the Landau gauge. However, this framework

is heavily based on the existence of the BRST symmetry while neither SGZ nor SRGZ are

BRST invariant [22]. Therefore, throughout the paper, we have relied on the extended

model ΣGZ and ΣRGZ. With these “enlarged” actions, one can then draw very similar

conclusions as in the ordinary Yang-Mills case. The results of interest, i.e. those for the

(Refined) Gribov-Zwanziger action, then easily follow from these extended models in the

physical limit, in which case certain external sources are assigned a suitable value.

Firstly, the classically gauge invariant operator F 2
µν mixes with two other operators, a

BRST exact operator, E = s[∂µcaAa
µ +∂ω∂ϕ+gfakb∂ωaAkϕb +UaDabϕb +V aDabωb +UV ],

and an operator proportional to the gluon equation of motion, H = A δΣGZ

δA = A δΣRGZ

δA . By

using the algebraic renormalization procedure, we have determined the form of the mixing

matrix Z to all orders,




F0

E0

H0



 =




Z−1

qq −ZαqZ
−1
qq −ZαqZ

−1
qq

0 1 0

0 0 1








F

E

H



 , (6.1)

which has an upper triangular form, as required [35, 36].

In a second part of the paper, we have completely fixed all the elements of this

mixing matrix, by using only algebraic arguments. We have found

Z =




1 − β(g2)

εg2

2γc(g2)
ε

2γc(g2)
ε

0 1 0

0 0 1



 , (6.2)

which is completely analogous as in the case of the ordinary Yang-Mills theory [23]. This is

already a remarkable fact. In addition, we have also encountered numerous checks on our

results as we have recovered multiple known relations between the anomalous dimensions

of all the fields and sources.

In the final part, we have determined a renormalization group invariant including F 2
µν ,

given by

R =
β(g2)

g2
F − 2γc(g

2)E − 2γc(g
2)H , (6.3)

which is the main result of this paper. This operator would then be a good point to start the

study of the (lightest) scalar glueball from, by means of the correlator 〈R(x)R(y)〉phys [39].

In standard Yang-Mills gauge theories, gauge invariant operators F only mix with

BRST exact and equation of motion type terms. While the latter always yield trivial in-

formation at the level of correlators, the BRST exact pieces drop out due to the BRST

invariance of the gauge invariant operator F and of the vacuum. In the Gribov-Zwanziger

approach, the situation gets more complicated due to the breaking of the BRST symme-
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try6. In the physical limit, E is no longer a BRST invariant operator. In addition, the

BRST symmetry is softly broken. Therefore, when turning to physical states, E will no

longer be irrelevant, and explicitly influence the value of the correlator. This is not the

only observation we can make. R(x) is not the only renormalization group invariant of

dimension 4. Indeed, also the operator E(x) does not run with the scale, as we directly

infer from equations (5.3) and (5.4). We can therefore imagine to study correlators of linear

combinations of the operators F and E , where the linear combination is chosen in such a

way that the emerging pole structure would be real. We notice that this is not a trivial

issue in the Gribov-Zwanziger framework [24], basically due to the fact that the poles of

the gluon propagator itself are already not necessarily real-valued. When the Gribov pa-

rameter γ2 is formally set back to zero, we shall recover the correlators of the usual kind

in Yang-Mills gauge theories, as the BRST symmetry gets restored, as well as the BRST

exactness of the operator E .

A research project along the previous lines would thus be very interesting to pursue. It

would also enable us to show that the soft BRST breaking, deeply related to the presence

of the Gribov horizon, is not necessarily a negative feature of the theory. Rather, it

could be very helpful in the construction of suitable operators [39]. We therefore conclude

that the results in this paper have to be seen as a first step towards the construction of

(hopefully) physical correlators in the GZ theory. As it should have become clear from this

paper, an important tool has been the possibility of embedding the (R)GZ theory into the

extended model. The nilpotent exact BRST symmetry of the latter model can be used to

identify the renormalizable operators by using cohomological techniques, which then also

give the renormalizable operators in the physical limit. These latter operators will contain

the classically gauge invariant operators. At the same time, also renormalizable BRST

exact operators can be found, which reduce to renormalizable operators in the physical

limit, being not necessarily BRST exact. It then remains to be seen whether suitable

linear combinations of these two types of operators can be found that successfully describe

physical correlators. This will be the topic of future work. As there are multiple mass scales

present in the (Refined) Gribov-Zwanziger framework, we expect all of them to influence

the pole of the correlators under study [39].
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